Bot Protection

Please confirm you are not a robot

Main menu

2025 - Most Expensive Cities In Asia By Cost Of Living

We strive to ensure the accuracy of our research data. If you can help improve it, please share some prices from your city

Top Most expensive cities in Asia to live in 2025

Tell us about prices in your city

Comparisons get better with each new piece of data you provide. Share some prices from your city!

Ranking

Indicators

#

Place

Cities

Asian ranking

Cost of living index

Most expensive first

Purchasing power index

Comparable to New York

Rent to salary ratio

Rent/Salary
🏅 1
🇸🇬   Singapore, Singapore
82.53
0.89
0.53
🥈 2
🇭🇰   Hong Kong, Hong Kong
73.47
0.91
0.47
🥉 3
🇹🇲   Ashgabat, Turkmenistan
63.11
0.19
1.84
4
48.19
0.09
1.01
5
47.37
0.20
0.63
6
🇹🇱   Dili, Timor-Leste
41.98
1.26
0.32
7
🇲🇻   Malé, Maldives
38.56
0.48
0.77
8
🇯🇵   Tokyo, Japan
34.80
1.11
0.30
9
🇱🇦   Vientiane, Laos
34.70
0.12
3.74
10
🇲🇴   Mação, Macao
33.11
0.78
0.51
11
🇰🇷   Seoul, South Korea
32.92
1.37
0.25
12
🇯🇵   Kawasaki, Japan
32.38
1.39
0.22
13
🇯🇵   Sapporo, Japan
30.22
0.74
0.45
14
🇯🇵   Yokohama, Japan
29.80
1.31
0.24
15
🇹🇭   Phuket, Thailand
29.47
0.44
0.77
16
🇰🇷   Daegu, South Korea
28.99
1.35
0.22
17
🇰🇷   Incheon, South Korea
28.58
1.42
0.21
18
🇯🇵   Osaka, Japan
28.33
1.12
0.27
19
🇯🇵   Nagoya, Japan
28.31
1.33
0.22
20
🇷🇺   Moscow, Russia
27.78
0.86
0.49
21
🇰🇷   Busan, South Korea
27.58
1.32
0.21
22
🇰🇷   Gwangju, South Korea
27.37
1.24
0.23
23
🇨🇳   Shanghai, China
27.28
1.15
0.30
24
🇯🇵   Kyoto, Japan
27.00
1.03
0.25
25
🇹🇼   Taipei, Taiwan
26.35
1.16
0.29
26
🇨🇳   Beijing, China
26.25
1.17
0.28
27
🇰🇷   Daejeon, South Korea
26.03
1.31
0.22
28
🇯🇵   Kobe, Japan
25.69
1.01
0.27
29
🇨🇳   Shenzhen, China
25.40
1.21
0.26
30
🇰🇷   Suwon-si, South Korea
24.83
1.73
0.17
31
🇮🇳   Surat, India
24.38
0.30
1.35
32
🇲🇳   Ulaanbaatar, Mongolia
24.24
0.30
1.17
33
🇹🇭   Samut Sakhon, Thailand
24.08
0.50
0.72
34
🇰🇷   Ulsan, South Korea
24.01
1.67
0.15
35
🇹🇭   Bangkok, Thailand
23.82
0.54
0.54
36
🇯🇵   Saitama, Japan
23.64
1.16
0.21
37
🇵🇭   Taguig, Philippines
23.58
0.38
0.83
38
🇹🇼   Taoyuan, Taiwan
23.00
0.75
0.38
39
🇹🇼   Kaohsiung, Taiwan
22.70
0.86
0.33
40
🇮🇳   Mumbai, India
22.58
0.72
0.46
41
🇰🇭   Phnom Penh, Cambodia
22.01
0.27
1.11
42
🇵🇭   Manila, Philippines
21.62
0.40
0.73
43
🇺🇿   Tashkent, Uzbekistan
21.60
0.39
0.94
44
🇹🇼   Taichung, Taiwan
21.52
1.03
0.25
45
🇨🇳   Suzhou, China
21.48
0.74
0.30
46
🇨🇳   Guangzhou, China
21.46
0.95
0.29
47
🇰🇿   Almaty, Kazakhstan
21.15
0.50
0.76
48
🇷🇺   Rostov-on-Don, Russia
20.80
0.44
0.87
49
🇲🇾   Kuala Lumpur, Malaysia
20.43
1.21
0.26
50
20.36
0.45
0.61
51
20.35
0.71
0.52
52
🇨🇳   Wuhan, China
20.13
0.78
0.36
53
🇵🇭   Cebu City, Philippines
19.98
0.38
0.75
54
🇵🇭   Caloocan, Philippines
19.83
0.24
1.44
55
🇹🇭   Nonthaburi, Thailand
19.56
0.72
0.29
56
🇮🇩   Jakarta, Indonesia
19.33
0.51
0.62
57
🇹🇼   Tainan, Taiwan
19.31
1.14
0.20
58
🇹🇭   Chiang Mai, Thailand
19.25
0.59
0.43
59
🇦🇿   Baku, Azerbaijan
19.24
0.42
0.66
60
🇨🇳   Tianjin, China
19.24
0.82
0.31
61
🇲🇾   Johor Bahru, Malaysia
19.18
0.82
0.41
62
🇷🇺   Vladivostok, Russia
19.18
0.51
0.72
63
🇰🇬   Bishkek, Kyrgyzstan
18.94
0.32
1.06
64
🇱🇰   Colombo, Sri Lanka
18.86
0.20
0.97
65
🇷🇺   Khabarovsk, Russia
18.79
0.56
0.62
66
🇺🇿   Nukus, Uzbekistan
18.76
0.11
1.36
67
18.25
0.46
0.74
68
18.16
0.44
0.62
69
🇺🇿   Fergana, Uzbekistan
17.71
1.03
0.23
70
🇷🇺   Irkutsk, Russia
17.68
0.50
0.71
71
🇻🇳   Hanoi, Vietnam
17.68
0.47
0.69
72
🇨🇳   Xi'An, China
17.49
0.79
0.30
73
🇲🇾   Klang, Malaysia
17.48
0.81
0.40
74
🇹🇭   Samut Prakan, Thailand
17.17
0.61
0.37
75
🇷🇺   Yekaterinburg, Russia
17.02
0.55
0.63
76
🇹🇯   Dushanbe, Tajikistan
17.00
0.16
1.75
77
🇦🇫   Herat, Afghanistan
16.57
0.17
1.29
78
🇹🇭   Yala, Thailand
16.54
0.72
0.32
79
16.46
0.41
0.53
80
🇨🇳   Chengdu, China
16.43
0.86
0.25
81
🇷🇺   Novosibirsk, Russia
16.42
0.54
0.60
82
🇮🇳   Bengaluru, India
16.33
1.28
0.17
83
🇷🇺   Kazan, Russia
16.30
0.58
0.62
84
🇨🇳   Chongqing, China
16.26
0.86
0.25
85
🇮🇳   Delhi, India
16.24
0.85
0.28
86
16.19
0.59
0.56
87
🇻🇳   Haiphong, Vietnam
16.10
0.61
0.54
88
🇵🇭   Batangas, Philippines
16.09
0.18
1.46
89
🇻🇳   Da Nang, Vietnam
16.05
0.48
0.67
90
🇷🇺   Makhachkala, Russia
15.82
0.37
0.91
91
🇮🇩   Surabaya, Indonesia
15.79
0.37
0.73
92
🇻🇳   Hải Dương, Vietnam
15.76
0.49
0.52
93
🇷🇺   Barnaul, Russia
15.69
0.44
0.80
94
🇮🇩   Tangerang, Indonesia
15.68
0.33
0.85
95
🇦🇿   Sumqayit, Azerbaijan
15.67
0.49
0.56
96
15.64
0.34
0.70
97
🇹🇭   Kalasin, Thailand
15.54
0.37
0.60
98
🇷🇺   Krasnodar, Russia
15.44
0.61
0.51
99
🇰🇿   Karaganda, Kazakhstan
15.38
0.56
0.51
100
🇰🇿   Shymkent, Kazakhstan
15.35
0.34
0.89
101
🇮🇳   Hyderabad, India
15.21
1.11
0.18
102
🇵🇭   Bulakan, Philippines
15.15
0.38
0.66
103
🇮🇳   Ahmedabad, India
15.09
0.60
0.36
104
🇮🇩   Bekasi, Indonesia
14.98
0.49
0.49
105
🇷🇺   Omsk, Russia
14.76
0.60
0.53
106
🇦🇫   Kabul, Afghanistan
14.61
0.30
0.54
107
🇷🇺   Tolyatti, Russia
14.55
0.47
0.73
108
🇷🇺   Ufa, Russia
14.53
0.60
0.53
109
🇷🇺   Chelyabinsk, Russia
14.48
0.51
0.64
110
🇮🇩   Medan, Indonesia
14.45
0.33
0.67
111
🇮🇳   Chennai, India
14.40
1.02
0.19
112
🇺🇿   Samarkand, Uzbekistan
14.32
0.36
0.70
113
🇷🇺   Volgograd, Russia
14.30
0.43
0.67
114
🇰🇿   Aktobe, Kazakhstan
14.14
0.28
1.02
115
14.04
0.29
0.63
116
🇷🇺   Saratov, Russia
14.02
0.54
0.56
117
🇳🇵   Kathmandu, Nepal
13.70
0.28
0.62
118
🇮🇩   Bandung, Indonesia
13.65
0.30
0.69
119
🇵🇰   Lahore, Pakistan
13.61
0.23
1.02
120
🇮🇳   Lucknow, India
13.48
0.56
0.33
121
🇵🇰   Karachi, Pakistan
13.42
0.21
1.21
122
🇺🇿   Bukhara, Uzbekistan
13.31
0.67
0.36
123
🇮🇳   Jaipur, India
13.28
0.77
0.23
124
🇵🇰   Quetta, Pakistan
12.70
0.14
2.10
125
🇧🇩   Dhaka, Bangladesh
12.69
0.37
0.36
126
🇮🇳   Kolkata, India
12.66
0.63
0.25
127
🇻🇳   Can Tho, Vietnam
12.41
0.22
1.05
128
🇻🇳   Bien Hoa, Vietnam
12.24
0.48
0.51
129
🇺🇿   Namangan, Uzbekistan
11.92
0.56
0.51
130
🇵🇰   Rawalpindi, Pakistan
11.89
0.25
0.86
131
🇵🇰   Multan, Pakistan
11.72
0.30
0.61
132
🇮🇩   Sidoarjo, Indonesia
11.38
0.30
0.64
133
🇧🇩   Chattogram, Bangladesh
11.36
0.40
0.30
134
🇮🇩   Depok, Indonesia
11.21
0.70
0.20
135
🇵🇰   Peshawar, Pakistan
11.20
0.30
0.69
136
10.93
0.75
0.22
137
🇵🇰   Faisalabad, Pakistan
10.53
0.33
0.60
138
🇧🇩   Gazipur, Bangladesh
10.39
0.28
0.40
139
🇵🇰   Gujranwala, Pakistan
9.64
0.34
0.49
140
🇧🇩   Narsingdi, Bangladesh
8.35
0.63
0.20
141
🇧🇩   Noakhali, Bangladesh
7.72
0.97
0.07

You are free to use this data, but a link to our website is required!